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Constructive role of temperature in ratchets driven by trichotomous noise
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The dynamics of an overdamped Brownian particle in a piecewise linear spatially periodic potential sub-
jected to both thermal and colored symmetric three-level Markoftidchotomou$ noises is investigated. In
the case of large flatness, the exact formula for the stationary current is presented. The dependence of the
current on the system parameters is analyzed and the conditions for the occurrence of current reversals are
found. It is shown that the direction and value of the current can be controlled by a thermal noise. Asymptotic
formulas for the current for various limits of the noise parameters are calculated and compared with the results
of other authors. For small noise amplitudes, it is demonstrated that the temperature at which the current is
maximized is proportional to the height of the potential barrier, being a slowly varying function of the other
system parameters.

DOI: 10.1103/PhysReVvE.63.041110 PACS nunier05.40—a, 05.60.Cd, 02.56-r

I. INTRODUCTION The authors of Ref.17] have analyzed a correlation ratchet,
in which directed transport is subjected to both a thermal
The past six years have witnessed an increasing interest gquilibrium noise and zero-mean asymmetric dichotomous
the study of noise-induced transport in spatially periodicfluctuations. They have shown that the transport direction of
structures called ratchetfor a reference survey, s¢g—3)). Brownian particles can be controlled by thermal noise, i.e.,
It was argued if4] that a ratchetBrownian motoy could the presence of an additional thermal noise can cause CRs.
extract energy even from zero-mean value nonequilibriunMoreover, the dependence of the current on the temperature
fluctuations. The initial motivation in this field has come is nonmonotonic and there are two other characteristc
from cell biology, in particular from studies of the mecha- timal) temperatures at which, respectively, the positive and
nism of vesicle transport inside eukariotic cells, via the mo-negative currents are maximized.
tor proteins along microtubuld®,4—6. Another motivation The models with CRs are potentially very useful, because
arises from the possible new methods of particle separatio@Rs could lead to a more efficient fluctuation-induced sepa-
[7-9]. Later on, new systems with the same underlying ideasation of particled8,20—24. This fact has partly motivated
for the transportation were proposed, such as the recognitiomany works in which the CR phenomenon is also considered
of the “ratchet effect” in the quantum doma[i0-13. (for a reference survey, s¢k,2] and alsd23]). For example,
Many different forms of ratchet systems are possiblejt has been shown that the effect of CRs can be attained by
since ratchet systems do not obey a detailed balance that cahanging the correlation time of nonequilibrium fluctuations
be violated in many different ways. The classification of dif- as well as the flatness paramettire ratio of the fourth mo-
ferent types of ratchet&orrelation, flashing, etcis in Ref.  ment to the square of the second momeoit the noise
[1]. Among them, we can mention the “correlation ratch-[20,24—26. The direction of the current can also be reversed
ets,” in which the particles move in a spatially periodic static by modifying either the power spectrum of the noise source
potential driven by a nonthermal noisy force. The necessarj27] or the number of interacting Brownian particles per unit
condition for net movement in one direction is that the po-cell [28], the mass of the particld9], the temperature in
tential has no inversion symmetry or the fluctuations are stamultinoise casefl7], etc.
tistically asymmetric in the sense that their odd-numbered Nevertheless, most of the results have been obtained by
higher-order cummulants are not identically z¢td]. numerical methods or for limits of slow and fast noises.
It should be noted that the dynamics in ratchet structureFhere are not many exact results known for correlation ratch-
with its inherent spatial asymmetry generally exhibits a richets, enabling us to quantitatively evaluate the values of the
complexity, such as the occurrence of multiple current revernoise parameters corresponding to CRs for concrete models,
sals (CR9 and multipeaked current characteristick,2]. or giving sufficient and necessary conditions for their exis-
Also the combined influence of several different noisetence[23,24,27,30 This is caused, first and foremost, by the
sources can cause unexpected behavior in the sygtd®d—  fact that even simple model ratchets display a rich variety of
19]. Two noises acting together can potentially generate a fabehaviors that vary remarkably with the system parameters.
more organized motion than either of them alone, event would be quite difficult to capture the full range of these
though the noise sources are statistically indepenflEsit  possibilities and the transitions between them at changing
parameters by numerical solutions alone.
Unfortunately, the multinoise case is difficult to treat ana-
*Electronic address: ain@tpu.ee lytically. However, the advantage of multinoise models with
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a thermal noise is that the control parameter is temperature, o023

. ) L : p(z,t) - ~~ ~ ~ o~
which can easily be varied in experiments as well as poten- ——=— y( p(z,t)— Ps(z)f p(z’,t)dz’),
tial technological applications. at

In this paper, we consider one-dimensional overdamped
dynamical systems determined by a first-order differentiako that the trichotomous process is a particular case of the

equation with a periodic piecewise linear potential and Withkangaroo procesi24], with a correlation timér,=1/» and
an additive noise term composed of a trichotomous and some ’ ¢

; /AW /T2(F\\2

thermal noise. The trichotomous process is a symmetri(“,\'Ith the .flatness parametes=(Z (t))/(Z (t~)>~—1/(-2q.).
three-level stationary telegraph process characterized W} & stationary state, the fluctuation procefd) satisfies
three parameters: amplitudg e (0,), correlation timer, (Z(t+7),Z(t))=2qadexp(—v7) and the noise intensity is
€ (0,°), and flatnessp e (1) [23,31,33. The purpose of 52=4qaZ/v, i.e., it is a symmetric zero-mean exponentially
this paper is to provide exact analytical results for the staggrrelated noise.
tionary current] over extended trichotomous noise param- By applying a scaling of the form
eters and temperature regimes of the system. We show that
the direction and value of the current can be controlled by ~
temperature. In the case of a large flatness, we have suc- , _ t= r 7= Lz V(x)= £=
ceeded in reaching conditions which bring forth CRs. ' to’ Vo ' Vo ' Vo

The structure of the paper is as follows. Section Il pre- 2
sents the model and exact differential equation for the sta-

tionary probability density. Section Il analyzes the behaV|orWe get a dimensionless formulation of the dynamics with the

of the current at different limits, such as the zero-temperatur?)otentiaw with the propertyV/(x) =V(x—1). By the choice
case, slow-noise limit, large-amplitude limit, etc.. Section IV _ L2/ the dimensionless friction coefficient turms to
focuses on the case of a large flatness. The stationary curre 0

is found and the dependence of CRs on the noise parametef8iy: The rescaled noise is given by

and the temperature is investigated. In Sec. V, the physically

important case of a small noise amplitude is analyzed and the xLZy LEO kT

interval of temperature that maximizes the current is esti- v=——, ==, D=—, 3)
mated. Section VI contains some concluding remarks.

V(%) L_”g

| X

where D is the strength of the rescaled zero-mean Gaussian
II. MODEL WITH A TRICHOTOMOUS white noiseé(t). For brevity’s sake, from now on we shall
MARKOVIAN NOISE call D temperature. The dynamics reads

Let us consider an overdamped motion of BrowgizaNn par- X
ticles in a one-dimensional spatially periodic potentigk) —=h(X)+Z(t)+£&t), h(x)=-—
=V(x+L) of a periodL and a barrier heigh/y=V,, dt
~Viin- Its dynamics is determined by the stochastic differ-
ential equation

dV(x)
i @

The joint probability density for the position variabigt)
and the fluctuation variable(t), P,(x,t), satisfies the
Fokker-Planck master equation

dX - - - .-
Kﬁ=h(x)+z( )+ &(1), (N d 9 a)
EPn(x,t)——& h(x)+zn—D5 Pn(x,t)
whereh(x) = — (d/dx)V(X) is the deterministic force. +§m‘, UnmPm(X,1), (5

The thermal fluctuationg(t) are modeled by a zero-

mean ~G§u33|an whlte~n0|§e with the .correIaFlo_n funCtlonwith P,(x,t) denoting the probability density for the com-
(&(t1),£&(t,))=2kkgTS(t,—ty), where is the friction co-

"] / bined process x,z,,t); n,m=1,2,3; z;=—agy, 2,=0, z
efficient, kg is the Boltzmann constant, afids the tempera- P X20.0) ! 0 2 3

o =a,, and
ture of the system. The random forZ€t) represents non-
equilibrium fluctuations assumed to be a zero-mean 1
trichotomous Markovian stochastic proc¢28,31,32 taking q q q
the valuesz={a,,0,—a,},a,>0. The jumps follow in time U=v| 1-29 —2q9 1-2q|. (6)
according to a Poisson process, while the values occur with q q g-1

the stationary probabilitiesP(a,)=P<(—ag)=0q, Ps(0)
=(1-2q). The marginal densityp(z,t) for this process The stationary currend is then evaluated via the current
evolves according to densities
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: d|
in()=| h(x)+2,=D 3= | Pr(X),

J=§ in(¥), (7)

whereP;(x) is the stationary probability density for the state
(x,z,). It follows from Eq.(5) that the currend is constant.

PHYSICAL REVIEW E3 041110

Unfortunately, exact solutions of E(8) can be obtained
in only a few cases. Here we consider a piecewise linear
(sawtoothlike potential, the dimensionless form of which
reads

—(x—d)/d, xe(0d) mod 1,

VOO=] x—dyr(a-ay,

xe(d,1) mod 1, (12

whered e (0,1) determines the asymmetry of the potential,

For the calculation of the stationary probability density in\yhich is symmetric id= 1. We may confine ourselves to the

the x space,P(x) =X ,P;(x), and the stationary currerdt

cased<3. As our starting equatiofB) has been derived at

=const, the following differential equation can be obtainedthe assumption that(x) is differentiable at every point, we

from Eq. (5):

d d
pih(x)+ | h(x) $(x) —2qagP(x)— D &zp(x))

d

d
+d—X h(X)—Dd—X

vi(X)

el
v+h'(x)

2 d )
+ | N0 W(0 ~ 293P (x) = D v(x)

)

1 d
Fh (%) dx W(X) |, (8)

) d
=(1—ZQ)30&
where
d d
h'(x)= &h(x), 1,0(X)E—J+h(X)P(X)—D$(P(X).

9

This is a(nonautonomous linegfifth-order ordinary differ-
ential equation with, additionally, the probability curreitp

be determined. Two conditions are imposed on it: periodicity
P(x)=P(x+1) and normalization oP(x) over the period

interval L=1 of the rescaled ratchet potent\(x):

f:P(X)dXI 1. (10

These two conditions are sufficient for a unique solution of

Eq. (8). The combination of Eqg8)—(10) with Eq. (4) yields

have to consider the sawtooth potential as a limit case of a
smooth potential, so that

h(d+k)=h(k)=0,

with k being an integer. The forde(x) being periodic, the
stationary distributiorP(x) as a solution of the problem Egs.
(8)—(10) is also periodic and it suffices to consider the prob-
lem in the interval[0,1). The force corresponding to the
potential(12) is

dV(x) [b=1d, xe(0d),

NOO=~ =45 —ce—11-0),

xe(d,l).
(13

As the forceh(x) is a piecewise constant in the open inter-
vals (0d)(mod 1) and ¢,1)(mod 1) with a discontinuity at
points x;=d(mod 1), x,=1(mod 1), Eq.(8) splits up into
two fifth-order linear differential equations with constant co-
efficients for two functionsP;(x) (i=1,2) defined on the
intervals (Od) and d,1), respectively. The solution reads

5
J
Pi(x)=i-+ gl Ciyei®,

(14

whereh;:=b, h,:=—c, C;, are constants of integration, and

{\ik,k=1,...,5 is the set of roots of the algebraic equation
AP —3h\ P+ (3hZ—a3—2vD)A?+ (4D v+a3—h?)h\?

+vD(vD—2h?+2qa3)\;— D?v?h;=0. (15)

the following relation between the average of the particlerg ¢ongitions, at the points of discontinuity, follow from

velocity (dX/dt) and the currend:

(dX/dty=(h(X))= folh(x)P(x)dx;]. (11

In the case ofj=3 (a dichotomous noigethe last term in
Eq. (8) vanishes and E(B) is satisfied by every solution of

the equation

d d
p()+ g | hOO$00) ~aGP(x) =D = () | =0.

The latter corresponds to E¢) in caseZ(t) is a dichoto-

Egs.(5) and(8):
P1(X) =Pa(x),  #1(Xi) = ¥ra(X),
T () =Totha(Xy),

T2¢2(x) — T2 (%) = (b+¢)Cy,
12 B0 = (T2 22) )
dx( 1 olﬂlxk—dx( 52— ag) ¥a(Xy),

where k=1,2, Tj:=h;—D(d/dx), #(X):=TiPi(x)~J, x;

mous noise. This has been investigated by several authorsx;=d, x2=0,72=1, C:=Cy+ vfgz,//(x)dx, and the con-

[15-17,24.

stantC, is defined by
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) 1 1 X! In the phase space of the parametgrsa, one can dis-

C2=2qa0—f h(X)lﬁ(X)dX—Vf dX'f P(x)dx. tinguish between four domains of qualitatively different
0 0 0 shapes of the curred{(v), characterized also by sign rever-

sals. Three circumstances should be pointed @uthere is a

tains a complete set of conditions for the ten constants ofpwer limit for the noise amplitude, name#y=Db+ ¢, below
which there is no CR at any; or ¢; (ii) the correlation time

integration of Eq(14) anq for the probability current This_ =1/v has an upper limit over which there cannot be more
procedu_re Iead_s to an inhomogeneous set of eleve_n Ime%ffan one CRyiii) the flatness parametes has a critical
algebraic equations. Now,can be expressed as a quotient Ofvalue ©=2. If p<2, then, as the correlation time grows
two determinants of the eleventh degree. However, this con.

lex formula is not reproduced here and instead the ex [om 0 tooe, there can be either two reversals or none, and if
piex formuia 1S not reproduced here a stead the € aC(,o>2, one reversal can but need not occur. It is remarkable
results are analyzed for their corresponding differen

: : that at sufficiently large noise amplitud >maxb?g?(1
asymptotic regimes. —2q), v/2q(1—-2q)}, the behavior of thz-%current is com-
pletely due to the effect of the flashing barrier for all values
Ill. ASYMPTOTIC REGIMES of the correlation time and the flatness parameter. In the case
of fixed values ofy and 7., the current saturates to a finite

_ _hegative value at great noise amplitudes:
The case of zero temperature has been considered in de-

tail in [23]. Here is a short review of the points needed fur- 1-2
ther OI’[I. : g J:_—qu [b2(1—e 2"¥b%) — c2(1— e 20",
The following characteristic regions can be discerned for (16)

the noise amplitudey,. o ]
(i) There is no current, if &-a,<c, as there is a station- N the fast-noise limit {—c, all other parameters fixgdhe

ary stable point for any state curr_e_nt is transcendentally sn_1a||. In this case, the current is
(i) In the case ot<ay<b, there exists one stationary POSitive if ¢<2 and negative itp>2.

stable point forz(t) = —a,, the motion to the left is switched

off, and the current is positive.

By including the eleventlinormalization condition, one ob-

A. The zero-temperature case

B. The large-amplitude limit

(iii) In the case ofy>b, the stochastic proce@t) can, For ag—o0 and for fixedv, g, andD, i.e., for the case of
though it should not, induce a reversal of the current. Nowa very large noise intensity?=4qaj/v>1, the current
we shall consider this case in some detail. saturates at the value

_(A—2q)PA{n(1-a?) (e = f)(1—eB) (1= A (e—a)(1—ea)+ n(1—e?)(1—aB)(a—B)]}

o 2 2 2 2 (17
2evq{yn[(1—ap)?+(a— )%+ (8qvD/bc—1)[(1— aB)?~ (a—B)?]}
|
where y:=+1+8vqD/b?, 7n:=+1+8vqgD/c*, In the case oh§>qu—>oo, while D is finite, we obtain

e:=exp(—1/2D), a:=exp(~y/2D), B:=exp(—n/2D).

It should be noted that in this case the current is negative 2(b—c)b2c2D
(or zer9 for all finite values ofv,D,d, andg. Obviously, if J~—(1-2q) (b—c)b%c (19
q=3, i.e., for dichotomous noises, or if the potential is sym- (8qvD)3?
metric (b=c), there is no current in the stationary state.
Equation(17) reveals a new quantitative aspect of the inter-
action of the noises: they combine to produce a new lengt roportional toD.

scale yD/v (see also15]). This length scale is a typical The conditiongvD>1 takes a distinct physical meaning:

distance the particle can diffuse between switches of the tri; S . :
chotomous force. There is no such length scale in the a the length scaleyD/w is much larger than the typical dis

sence of one of the fluctuation sources. At limit of zero tem-—- oo the particle is driven by the deterministic force in the

. JT statez=0 of the trichotomous noise.
perature, we find that the current is given by Ef6). If In the asymptotic limit ofgr— 0, i.e., if the trichotomous
D—o, we have

noise changes slowly is given by

nd the current vanishes algebraically qwD) ~*? at a rate

va(b—c) (18) 1-2q)vq(b
180cD° g L20va®=0) (20

bc

J~—(1-20q)

thus the current decays algebraically to zer®in® at a rate
proportional tor_ *. where
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FIG. 2. The current] vs the switching rates at different tem-
peratured in the case of the large-amplitude linjEq. (17)]. The
flatness parameter equats= 1/20=2 and the potential asymmetry
parameter igl=0.25. The current is negative and its absolute value
decreases monotonically &sincreases.

FIG. 1. The switching rate,,, that minimizes the currerisee
Eq. (17)] vs the dimensionless temperatude The curveg1)—(3)
correspond to the following parametef4) q=0.25, d=0.05;(2)
q=0.25,d=0.25; (3) q=3, d=0.45. If D>1, thenv,, is nearly
proportional to the temperature.

1/D

D(etP—1) ( P ey

vm(0)~

bc J2¢  11c?
Tt .
2q! 30 " 360

The dependence of the current on the temperature and the

As D increases, the functiof{ D) monotonically decreases switching ratev is illustrated in Fig. 2. As the temperature
from 1 to O. grows, the current decreases monotonically to zero at any

We can see that the currehtends to zero asq—« oras  values of the parametecsv, andd.
vg— 0. Consequently] reaches a minimum as a function of It is remarkable that in the case of fixed valuesgot,
v. The value of the correlation time that minimizes the cur-and D, the current saturates to a finite value at large noise
rent (r.,= 1/v,,), being a solution of a transcendental equa-amplitudes §,— ). This somewhat surprising result is due
tion, can in a general case be found by numerical calculatiorfo both an effective inhomogeneous diffusion, which be-
Some of its properties can be analyzed analytically, thoughcomes more homogeneous at an increasigigand the so-
As the temperature grows from zero to infinity, the param-called flashing barrier effect as stated in R¢20,23.
eter v, starts from a finite valuey,,(0), decreasing to a
minimum, and then grows monotonicallyee Fig. L C. The white-noise limit

For D>1, the following approximate equation seems ac-
ceptable:

f(D):=1—4D+ ) (21)

In the trichotomouss-correlated limit,y—o0,a9—, so
that 02=4qa§/v is finite, the solution of problent8) re-

3be 11\/§ c ) duces to
'm~ 54 P11 10 Vi) @2

so that the parameter,, is proportional to the temperature
and to the flatness parameter. 0.
According to numerical calculations by various values of
the system parameters, the application of &) does not
cause an error exceeding a few percent.
At large values of the potential asymmethg-c, and if
the conditionD<1 is also fulfilled,v,, can be given as

2(b—c)D
c

Vi~ Vm(O)( 1- (23

Hence,v,, decreases if the temperature increases. The corre- ot 02 o2 o4 0 o-sD

lation time 7¢o=1/v»(0), which minimizes the currentinthe  FIG. 3. The current) vs the temperatur® at various noise
case of zero temperature, can be found by the following tranamplitudesa, in the case of an adiabatic limfEq. (26)]. The

scendental equatignvherex=2qv,,(0)]: flatness parameter equats=1.5 and the potential asymmetry pa-
rameter isd=0.25. Note that fomy<<b=1/d, the current exhibits a
(x+ bz)ef)</b2=(b2—cz)+(x+ Cz)e*X’Cz. (24)  bell-shaped extremum; i,>b, thenJ decreases monotonically.
The temperature that maximizes the current decreases monotoni-
If b>c, we have cally asa, increases.
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0_4(b2_02)ellD* currentJ takes an extremum at the effective temperature
J~ YT 5(2— ), (25 D*~0.203. Hence, if the intensity of the trichotomous noise
4vD*>(e”™ —1) o2 is less than 0.406, there is a characteristic temper&tyre
where that maximizes (for ¢>2 minimizes the current: D,
=0.203- ¢?/2. If the intensityo? exceeds the critical value
o2 1 0.406,J decreases monotonically to zero as the temperature
*im— 4 =, i .
D > D, ¢ 24 increases
The current in this limit is proportional to the noise correla- D. The adiabatic limit

tion time that in this case is a measure of the distance from a; the long-correlation-time limitv— 0, the current satu-
equilibrium. The current in Eq(25) has a factor dependent (4ies at the value
on noise statistics via the flatness parameter

As the flatness parameter grows, a current reversal ap- J=Jy(b,c)—Jy(c,b), (26)
pears atp=2 in complete accordance with the results of
[24], where the general kangaroo process is considered. Thehere

d(ag+b)4(ag—c)?

Jo(0:0) = 5 ) (@p—c)(b—c+ ay)— D(b+c)2(e/@ 00— 1) (ela0- VoD 1) (%P —1) @7

The form of the currend essentially coincides with that in
[4] in the case of a dichotomous noise. For the adiabatic limit ~ ;
the current is positive and changes with temperature as fol- 212D 7 e!P ~1)?
lows: in case the trichotomous fluctuations induce transitions ) N )
back and forth over the potential barrier, i.e.,a§>b, J SO that the current is positive and decays algebraically to zero
decreases monotonically as the temperature increases. On ter >~ In the case of a dichotomous noisg=(3), such a
other hand, if the trichotomous transitions do not induceformula forJ has been found ifil5]. The thermal noise has
transitions in both directions over the barrier, i.e.ajfi<b, @ strong effect on the current in the small limit: in the

the net current exhibits a bell-shaped extremisee Fig. 3 Presence of thermal noise fluctuations, the current takes ex-

gagbc(b®—c?)e'P

(29

Hence, ifap<b, there is an optimal temperatui,, maxi-  Ponential growth froml ~ + exp(-C/r,) with a positive con-
mizing the current. As the noise amplitudg increases, the StantC that depends oay,q, andd, to J~ 722, It looks like
temperatureD ,, decreases monotonically to zeroagt=b. in this model the two noises acting together are able to gen-
For small noise amplitudes,<min{c,D}, one finds from  erate a considerably more organized motion than either one
Egs.(26) and (27) that of them alone, even though they are generated by statistically
independent sources. The authors of R&&] have reached
2 1D an analogous conclusion for the case of a dichotomous noise.
I~ gag(b—ce (D), (29  Extreme sensitivity to thermal noise can be seen from the

factor e*P/(e®—1)? in Eq. (29) that decays exponentially
at a smallD and the current drops lik&(e™*P) asD—0.
Notably, the limitsD—0 andv—c do not commute in the

D3bc(e!P-1)?

wheref(D) has been defined in E€RL). It is easy to ascer-
tain that the optimal temperatui®,,~0.216. It is remark- formulas for the cqrrenﬂ (see alsq16)). It should also be
able that in this case the characteristic temperabyede- ~ NOted that though in the case pf>2 andD =0 there can
pends neither on the shape of the ratchet potential nor on tHdSC occur one CR caused by variation:ofin the case of
parameters of the trichotomous noise. It seems reasonable fo~ 2 @ndD # 0 there can occur either two reversals or none.
assume that for overdamped ratchet models with an additive 't ¢&n be seen easily that the functional dependence of the
thermal noise and with an additive low-amplitude nonequi-CU'Tent on the temperatui@ is of a bell-shaped form. The
librium noise, the same value of the optimal temperature iPPtimal temperatur®,, that maximizes the current equals

the adiabatic limit occurs. 0.309

o IV. TRANSPORT IN THE CASE OF LARGE FLATNESS
E. The fast-noise limit

In the fast-noise limit, we allow to become large, hold- A. The large-flatness limit

ing all other parameters fixed, and use? as a smallness At a large-flatness parameter, i.@3>1, a natural way to
parameter. Thus, D # 0, in the largev limit the current can investigate the behavior dfis to apply smallg perturbation
be given as expansions. The stationary solution of E§) with D#0 is
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constructed in terms of integer powersgfThe current can terms held in the calculation, and that the exponential terms
be expressed a3=qJ M +q?J?+.... We shall calculate exp@py/h) of the currentJ can be linearized, i.e.,
the leading term of the curreqd*). Notably, the analysis of exp@pi/h)~1+Apy/h;.

this section is valid for the values of parameters satisfying The exact formula for the leading-order teqd™ of the

the conditions current is
o 0 . 0 . 21,2~2,1/D
=lp.—0l|< 116 = vagh-ce™ | ~
|Ap|k| |p|k p|k| mln{lhlli|p|k|}! i=12, (30) qJ(l):q f/D 5 J(b,C)_J(C,b)
where{p; ., k=1, ....,8 is the set of roots of the algebraic (e-1)
equation(15) and{p% k=1, ... .5 is the set of roots of Eq. 2ad(b—c)
(15) for q=0. These conditions result from the assumption ~ Db D2 c%a2)(12D?—b%al) |’ (31

that the higher-order terms in the expansion of the roots of
Eq. (15 are asymptotically smaller than the lower-order where

(vD+ag){y1val a1Ba(az+ B2) — Baras(as+ B1) ]+ 8(ag+b) +d(ag—c)} +2vD[ 8(ag—b)+d(ag+c)]

J(b,c)=
(vD—cag)*(vD+bag)*{ y1vale182+ 2(a1— @) (Bo— B1) 1+ £18,[4vD + (a9 +b)(ap—C) 1} 32
|
and This result coincides with E¢25) if o2/2<min{D,D? and
¢>1. The first condition, in which the intensity of the tri-
yi:==AvD+(ag+h;)%, hy:=b, hy=—c, chotomous noise is much smaller than that of the thermal
noise, is in complete accordance with the conditi(3.
v, (i) In the case of low temperaturB,— 0, the conditions
gizzl—ex;{ - —') (30) reduce tog<min{c/ay,c%/2v}. For ag>b, the current
DIhil behaves asymptotically as
1 aO_hi ¥i J%Vq{[ev/c(aofc)_efv/b(aOer)]fl
aizzl—exp{—— h +h—)}
2D i [hi —[e/b(ag=b) _ g~ vic(ag+e)] -1y (35)
1 [ag—h; Notably, J is positive in the case dy<bc at anyw. If the
Bi=€xp 55 ho h| -1, (33 noise amplitude exceedsc, then the current reverses to

negative atv=v,. The point of reversal,, being a solution
~ of the transcendental equatiagt{ry)=0, can in a general
O:=e1Br02Y2, O=gzP1a171. case be found by numerical calculation. As the noise ampli-

tude grows, the parameter, decreases in the regioa

The result(31)—(33) is not confined to the large-flatness >bc monotonically from infinity to zero. Ifap>bc, the

model. Instead, it applies to a large class of asymptotic reasymptotic formu|a,,0%2b202/a§ can be of use.

gimes. It is also valid for all asymptotic regimes in which the gy c<ay<b, Eq. (31) takes the form

leading term is proportional tq. These are, for example, the

adiabatic limit (+—0), the fast-noise limit 4—), and the J~vq[e”/®@0~ ) — g~ ¥/b(aotb) =1

case of a small noise amplitudag<c). It is not difficult to

see that at the limite—0 andv— o, Egs.(31)—(33) reduce  so that the current is positive for all values sfandd. If

to Egs.(26) and(29), respectively. ag<c, thenJ vanishes likeO(e~®/®) with a positive con-

The exact formulg31) for qJ®) is complex and as such stantC asD—0.

not lucid enough. To get more information, we shall study it  (iii) In the asymptotic limit of high temperatur®— <,

in the asymptotic limits. To visualize the exact results, com-we find thatJ is positive and decays algebraically to zero in

puter graphics will be applied. D~ * at a rate proportional taé,

q(b—c)a3

B. Asymptotics ~
18cD*

(36)
(i) In the trichotomouss-correlated limit, we have

— a24%(h?—c2)elP We note that this formula is valid for all values of the pa-
o7 (34) rameterq. To leading order of larg®, this coincides with a

J~qJV~ :
a 21°D3(eP-1)2 result of[16] for the dichotomous case=3.
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FIG. 4. The current=gJ® vs the trichotomous noise ampli- FIG. 5. The currenf=qJ™® vs the switching rate in the case

tudea, at the potential asymmetry paramedtier 0.25 in the case of  of large flatnes$Eq. (31)]. The curves have been computed for the
large flatnes$Eq. (31)]. Curves(1)—(3) correspond to the following noise amplitudeay,=0.94, the potential asymmetry parameter

parameters(1l) »=1, D=0.4; (2) »=30, D=1; (3) »=10, D =0.25, and temperatures: (R}0.1, (2)D=0.098, (3P =0.097,
=0.5. For largea,, the current saturates at a finite negative value(4)D =0.096. IfD<D_(ag) ~0.0976[curves(3) and(4)], two cur-
determined by Eq(37). rent reversals occur. The currehgrows monotonically to a finite

positive value as’ drops from 100 to zero.
(iv) For the large-amplitude limitag—o0, the current

saturates at the negative value Eq. (37), one might be tempted to postulate that for decreas-
ing values of the correlation time,, the absolute value of
vq(b—c) J(0) increases monotonically. However, this occurs only for
J==—pc (D), (37 the values ofv<min{c%/q,c¥Daq} where Eq.(37) is valid.

Though, in general, the parameters anda* cannot be
where the functiorf (D) is defined by Eq(21). This is valid  expressed by elementary functions, at certain constraints
for 2q<1 andqvr<min{c?,c?/D} [see also Eq(20)]. rather simple approximate solutions can be found for them.

(v) For small amplitudesa,<c, the leading term of the For example, ifd>0.01p>1/p, and v<15D, then the
current is positive and exhibits a bell-shaped formDass value of the noise amplitude,, that maximizes the current is
varied. The behavior of in this case will be considered in proportional to the temperature:

Sec. V.

Drawing on the asymptotic expressions Bt), we can am~pbcD, (38)
reach the following resultgi) For the variations of the am-
plitude a5, an odd number of CRs occur@i.) At the varia-
tions of the correlation time, the number of CRs is even d 1
or zero.(iii ) As for changes of the temperatube we have to 2(b—C)=p3d— w[ﬁbc(epb—epc)
differentiate between two cases. First,aif<bc, or if ag pLp
>bc and 7.>1/v,, there can occur either zero or an even
number of CRs. Second, in the case af>bc and . —2(b—c)(e”~1)(e”~1)]}.
<1/vq, there is always an odd number of CRs. Moreover, in
numerical calculations, varying the paramelerwe have The relative error at the application of E(8) does not
not observed more than two subsequent CRs. Thudjifor exceed 10%.
the possible number of CRs is zero, one, or two.

wherep is the solution of the transcendental equation

D. Current versus switching rate

C. Current versus noise amplitude We may also look at the solutigi81) as a function of the

We may look at the solutiofB1) as a function ofay. At switching ratev. The typical forms of the graph af(v) are
numerical analyses of the functioli*)(a,) we have ob- represented in Fig. 5. There is a lower limit for the noise
served up to three CRs. For example, at the parameter valuasnplitudea;(D), which depends on the temperature below
d=0.005,D=0.02, andv=1000, the current takes three ze- which there is no CR at any. Direct numerical calculations
ros: ag;~15.79,a0,~18.25, andayz~162.31. with various values of the system parameters indicate that at

Still, in most cases there is only one CR. The typical forma moderate asymmetry of the potentidt> 0.01, the behav-
of the graph ofJ(ag) is represented in Fig. 4. The current ior of J(v) is as follows. Ifag>a;(D), then two CRs occur
has a positive maximum at a certain finite vakyg of a, as the correlation time grows from 0 to. For increasing
and exhibits a reversal of the directionaat=a* >a,,. Fora values ofv, the current starts from a positive value deter-
largeay, the current saturates at a finite negative val(re) mined by Eq.(26), decreasing to a negative local minimum,
[see also Eq(37)]. At increasing temperature, the current next it grows, attaining a positiveeery small in most casgs
J(«) approaches zero monotonically. Following from local maximum, and thed approaches zero as—«. The
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local maximum of the currend increases and the corre-
sponding switching rate,, [ Jnax=J(vm] decreases mono-

tonically as the temperature increases. The current change

its sign at the two noise correlation time valugs= 1/v; and

7,=1/v,. A growth of the temperature causes the bigger of

the two solutions ofJ(v)=0, v,, to drop monotonically
from infinity to a certain finite value, while the other solution
vy is nonmonotonic and has a minimum at a finite value of
D=D;. It should be noted that the temperatlrg at which
the absolute value of the local minimum of the current is
maximal does not differ much from the temperatlyg ex-
ceeding it only slightly.

At low temperaturesD<D,, one has to discern two
cases. First, ibg<bc, thenw, tends to infinity ifD tends to
zero. Second, ify>bc, then at decreasinD the parameter
v, approaches a finite value,(0) that can be found from
the transcendental equatipny= v1(0)]

evolc(ao—c) +e vo/c(ag+c) — evolb(ao—b) +e vo/b(ag+ b).
(39

Notably, at large values of the amplitud®,>bc, the mini-
mum v4(D) of v, is practically equal to the parametes,
i.e., v1(Dq)~r4(0).

If D>D4, theny, increases ab grows: there is another
characteristic temperatuiz.> D, at which the phenomenon
of CR disappears. FOD=D., the parameters; and v,
coincide (v1=v,) anda;(D.)=a,. If D>D¢, then the cur-
rent is positive. The corresponding typical graphs(f) are
given in Fig. 5 as the curved) and (2). For high tempera-
tures, wherdd>D,, the curvel(v) is always monotonic.

According to numerical calculations fol>0.001 we can
notice that at sufficiently large values of the noise amplitude
the critical temperatur®. is proportional to the amplitude.
At moderate asymmetries of the potential(d>0.2), the
factor of proportionality takes a remarkably simple form:

. 8p>1. (40

The tendency that is apparent at E40), namely a decrease
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FIG. 6. The curreni=qJ® vs the temperatur in the case of
large flatnes$Eq. (31)] atd=0.25. In the limit of high temperature,
J is positive and decays to zero 4. (a) The case oh,<bc.
Curves (1)—(4) correspond to the following parameterd) a,
=15, v=1; (2ay=3.5, v=16; (3) ay=3.5, v=21; (4) a,=4.5,
v=21. If v>v,(D;), then two current reversals occlaurves(3)
and(4)]. The parameter;(D,) can be found by using E¢31). (b)
The case ofhy>bc. Hereay=6 and the curves correspond (b
v=3, (2) v=10, and(3) v=50. If v>vpy~3.751, one current re-
versal appearfcurves(2) and(3)]. The critical switching ratey, is
the solution of Eq.(39). No current reversals occur when
<w41(D4)=~3.735[curve (1)].

of the critical temperature as the asymmetry of the potentiat=0.280, D 3~0.062, D;4~0.058, D ;5~0.050. Within the

grows, is also valid for large asymmetrie$<(0.2).

values ofD>D; andD3<D<D,, there is no CR; within

At some cases, one can find rather simple expressions f@¢.;<D<D.;, D;a<D<D.3, andD<D.s, there are two

the approximation of the parametey. For example, in the
case of a large noise amplitude,>maxbc,\/3bcD},d
>0.2, the value of the first reversal point can be estimated
by the following equation:

v1(0)

f(D)’ (4D

V1

wheref(D) is given by Eq.(21). Specifically, forD<1 we
have v,;~v,(0)(1+4D), and if D>1, then v,
~180v,(0)D>.

Notably, at large potential asymmetrielss0.01, we have

CRs; withinD;s<D<D,4, there are just four CRs.

E. Current versus temperature

In Fig. 6, we have plotted the curredD) as a function
of the temperatur®. It can be seen that the effect of CR can
be attained also by changing the temperaidrén a general
case, the dependenceXD) is nonmonotonic and there are
one to three characteristioptimal) temperatures at which

the left and right currents are maximized. It is remarkable

that there exist both the critical valige=bc of the ampli-
tudea, and the critical valuer;(ag) =1/v,(D4) of the cor-

noticed remarkable exceptions from the described behaviaelation timer..

of J(v). For instance, id=0.005 anday=23, there can be
four CRs with five critical temperature®.,~0.334,D,

04111

(i) If 7.>7(ap), then there is no CR. The current is
positive at all temperatures. The concrete value,0&,) for

0-9
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a givenay and asymmetry of the potential can be found by
numerical methods from E¢31).

(i) In the cases of large amplitudag>bc, another criti-
cal value of the correlation time,(ag) = 1/vo<7.(ag) ap-
pears, wherey is the solution of Eq(39). If ag>bc and
<7.<T74, there are two CRs. But i&y>bc and 7.< 5,
there is only one CR. Notably, at>bc the phenomenon of
two CRs would be hardly noticeable, foy and 7, can differ
materially from each other only #y~bc. For example, if
d=0.25 (a.=16/3), then it follows thata) if ag=>5.4, then
D,~0.08, 7,~0.167,7,~0.093; and(b) if ag=6, thenD,
~0.016,7,~0.2687,~0.267. A further growth of the am-
plitude would cause a quick drop of the differencergfand
To.
(iii) In the case ofagp<bc and 7.<7(ap), there occur

PHYSICAL REVIEW E 63 041110
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FIG. 7. The currenf=qgJ®) vs the temperaturB for a varying
switching ratev in the case of a small noise amplitualg=0.01 and

either two CRs or none. For moderate asymmetries of thg=0.25 [Eq. (42)]. The current is positive and exhibits a bell-

potential,d>0.01, we have always seen two CRs. At large
asymmetriesd<0.01, CRs can be absent in the region

<ap<b and there can be several critical correlation times;

for example, there are three in the caselef0.005 anda,
=23, namely 7;~6.00x10 3, 7,~4.57x10 3, and =,
~1.34x10 3. In the regions ofr,> 7, 73<7.<7,, there is
no CR, and inr,<r7.<71, 7.<73, there are two CRs.
The characteristic temperatu®3 at which the current is
zero are sensitive to variation of the model paramedgrsd,
and v. Note that in Eq.(3) the friction coefficient of the

shaped form for all values of the flathess parameter

_ gag(b—c)e'®

= 31D
D3bc(el/D_ 1)2

to zero[see also Eq(28)]. A direct numerical calculation of

the optimal temperatur®,, at which the current is maxi-

mized, indicates thdD ,, is a slowly varying function of the

correlation timer, and of the asymmetry of the potenticl

particle has been absorbed into the time scale. Thus, in theee Fig. 8 For all values of the parametedsand 7., the

original (unscaledl setup, particles with different friction co-
efficients are controlled by different effectivés and can

optimal temperatur®, is in the interval(0.21,0.32. As the
correlation time decreases, the optimal temperature increases

move in either direction in the same ratchet potential and théeom D,~0.216 to a local maximunithat is small and
same fluctuating environment, which has interesting biologihardly discernible and then decreases to 0.309. This is a

cal and technological implicationsee[1-3,6,7,9).

V. THE CASE OF A SMALL NOISE AMPLITUDE

Here we consider the case af<min{c,D}. We can start
with the ansatz

e~ V()/DlD

o~
—D(el’D— m +agP(x)

P(x)=

in Eq. (8). Collecting the terms of the ordex?, we get an

inhomogeneous second-order equation®¢x). In the case
of a sawtoothlike potentidll2), this equation is immediately
solvable. As the corresponding expression for the current i

remarkable result, for it indicates that there is some robust-
ness in the system: it can be assumed that the interval
(0.21,0.32 of the temperature is optimal for a large class of
overdamped ratchet models with an additive thermal noise
and with an additive low-amplitude nonequilibrium noise.

VI. CONCLUDING REMARKS

Above, we have presented some analytical and exact re-
sults for the dynamics of an overdamped Brownian particle
in a sawtooth ratchet potential subjected to both thermal
noise and zero-mean exponentially correlated three-level
fluctuations(trichotomous noise A major virtue of the mod-
els with trichotomous noise is that they constitute another
8ase admitting an exact analytical solution for the stationary

rather cumbersome, we would rather not present it hereurrent for any value of the correlation time=1/v, the

However, the currend can be given the form

J@)

J=aj lim (42)

agﬂo

ag

where qJ®M) is determined by Eqs31)—(33). It should be
noted that Eq.(42) is valid for all values of the flatness
parameterp=1/20=1.

noise amplitudea,, and the flatness parameter

For both slow and fast fluctuating forces, we have pre-
sented approximations that agree with the results of Refs.
[4,15,16,24. In the case of large noise amplitudes,{ )
with the other parameters fixed, the current saturates to a
finite negative valugEg. (17)]. This result is due to the
so-called flashing barrier effect as stated in RE2,23. It
is remarkable that in the cases of the adiabatic limit, fast-
noise limit, small-amplitude limit, and high-temperature

The net current is positive and exhibits a bell-shaped exlimit, the current takes the same qualitative form as in the

tremum (see Fig. J. As the correlation time increases,
decreases monotonically from

corresponding cases with a dichotomous noise. The presence
of flathessep>1 modifies the prefactor in a simple way: the
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[

D4

FIG. 8. The temperatur®, that maximizes
the current in the case of small-noise amplitude
vs Inv for some values of the potential asymmetry
parameterd. The optimal temperatur®,, does
not depend on the flatness parameter and lies in
the interval(0.21,0.32 at all values ofd, and v.

We can see that at small values @f an addi-
tional maximum and minimum oD ,, appear.

current is proportional to %/. This indicates that in the cases [8,17,21,22,3% For large flatnessesp& 1), we have elabo-
mentioned above, the flashing barrier effect can be neglectetated on the conditions for the noise parameters and tempera-

The thermal noise had a profound effect on the magnitudéure leading to a sign reversal &flf the control parameter is
of the current in the smalt, limit. By an absence of thermal temperature, then there is an upper limj{a,) for the cor-
noise, the flatness parametgrhas a critical valuep=2 for  relation timer., at greater values of which there is no CR.
the greater values of which at sufficiently large values of the=or ag>bc, another critical value of the correlation time
amplitudeag, the currentd(7;) versus correlation time can 75(ay) <71(8p) occurs. In the case,< 7.<r, there are two
be characterized by one sign reversaldCR); in the small CRs, but atr.<, there is only one CR.
7. limit, the current is transcendentally small and negative. Forag<<bc andr.<7.(ay), two or no CRs appear. They
In the presence of additional thermal noise, there can bean be absent only at the values of the noise amplitude
either an even number of CRs or none; in the smalimit, <ap<<b, which is possible only at large asymmetries of the
Jis positive and decays algebraically4ff*. Notably, in the  potentiald<0.01. Then the current exhibits disjunct charac-
case of a symmetric dichotomous noise<(1), there is no teristic “windows” of the correlation time where the
CR and the current is positive at all temperatures. temperature-controlled CRs take place.

An interesting circumstance concerning the ratchet mod- In the case of a small noise amplitudea,

els with a trichotomous noise is that for some system param< min{c,kgT/V,}, whereV, is a barrier height of the periodic
eters there occur more than two CRs. As far as we knowyqtential¥(x), the current is positive, and it exhibits a bell-

more than two CRs have never been seen for correlatio haped extremurfsee Fig. 7. The temperaturd,, at which
LT m

ratchets so far. At the same time, in the case of inertial deJ is maximized weakly depends on the other parameters

terministic rocking ratchets, the current can exhibit infinitely(q} d, and 7) and always lies in the interval
) ) C.

many reversal$33,34. ~ <
Our major result is that in sawtooth ratchet structures, th 0.'21\/0/ Kg ’0'32‘/.0/ Kg). It. Seems reasonable to assume that
his temperature interval is optimal for a large class of over-

direction of the transport of Brownian particles driven by . . :
trichotomous fluctuations can be controlled by thermal noiséiamped ratchet models with a_cjd|t_|ve the_rmal noise _and an
additive low-amplitude nonequilibrium noise. It remains to

(see Fig. 6. The necessary condition is that the flatness pas .
ramete? exceeds 1. The gdvantage of this model is thatpti*%e seen whether such a tolerancd gfcan play a role in the
control parameter is temperature, which can easily be varieBrObIemS of natural sciences.

in experimentgsee alsq17]). The discovery of temperature
regions in which particles of different friction coefficients are
transported in opposite directions could be implemented in The present work was partially supported by the Estonian
an effective method of particle separation as suggested i8cience Foundation under Grant No. 4042.
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