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Constructive role of temperature in ratchets driven by trichotomous noise
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The dynamics of an overdamped Brownian particle in a piecewise linear spatially periodic potential sub-
jected to both thermal and colored symmetric three-level Markovian~trichotomous! noises is investigated. In
the case of large flatness, the exact formula for the stationary current is presented. The dependence of the
current on the system parameters is analyzed and the conditions for the occurrence of current reversals are
found. It is shown that the direction and value of the current can be controlled by a thermal noise. Asymptotic
formulas for the current for various limits of the noise parameters are calculated and compared with the results
of other authors. For small noise amplitudes, it is demonstrated that the temperature at which the current is
maximized is proportional to the height of the potential barrier, being a slowly varying function of the other
system parameters.
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I. INTRODUCTION

The past six years have witnessed an increasing intere
the study of noise-induced transport in spatially perio
structures called ratchets~for a reference survey, see@1–3#!.
It was argued in@4# that a ratchet~Brownian motor! could
extract energy even from zero-mean value nonequilibri
fluctuations. The initial motivation in this field has com
from cell biology, in particular from studies of the mech
nism of vesicle transport inside eukariotic cells, via the m
tor proteins along microtubules@2,4–6#. Another motivation
arises from the possible new methods of particle separa
@7–9#. Later on, new systems with the same underlying id
for the transportation were proposed, such as the recogn
of the ‘‘ratchet effect’’ in the quantum domain@10–13#.

Many different forms of ratchet systems are possib
since ratchet systems do not obey a detailed balance tha
be violated in many different ways. The classification of d
ferent types of ratchets~correlation, flashing, etc.! is in Ref.
@1#. Among them, we can mention the ‘‘correlation ratc
ets,’’ in which the particles move in a spatially periodic sta
potential driven by a nonthermal noisy force. The necess
condition for net movement in one direction is that the p
tential has no inversion symmetry or the fluctuations are
tistically asymmetric in the sense that their odd-numbe
higher-order cummulants are not identically zero@14#.

It should be noted that the dynamics in ratchet structu
with its inherent spatial asymmetry generally exhibits a r
complexity, such as the occurrence of multiple current rev
sals ~CRs! and multipeaked current characteristics@1,2#.
Also the combined influence of several different no
sources can cause unexpected behavior in the system@4,15–
19#. Two noises acting together can potentially generate a
more organized motion than either of them alone, ev
though the noise sources are statistically independent@15#.
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The authors of Ref.@17# have analyzed a correlation ratche
in which directed transport is subjected to both a therm
equilibrium noise and zero-mean asymmetric dichotom
fluctuations. They have shown that the transport direction
Brownian particles can be controlled by thermal noise, i
the presence of an additional thermal noise can cause C
Moreover, the dependence of the current on the tempera
is nonmonotonic and there are two other characteristic~op-
timal! temperatures at which, respectively, the positive a
negative currents are maximized.

The models with CRs are potentially very useful, becau
CRs could lead to a more efficient fluctuation-induced se
ration of particles@8,20–22#. This fact has partly motivated
many works in which the CR phenomenon is also conside
~for a reference survey, see@1,2# and also@23#!. For example,
it has been shown that the effect of CRs can be attained
changing the correlation time of nonequilibrium fluctuatio
as well as the flatness parameter~the ratio of the fourth mo-
ment to the square of the second moment! of the noise
@20,24–26#. The direction of the current can also be revers
by modifying either the power spectrum of the noise sou
@27# or the number of interacting Brownian particles per u
cell @28#, the mass of the particles@29#, the temperature in
multinoise cases@17#, etc.

Nevertheless, most of the results have been obtained
numerical methods or for limits of slow and fast noise
There are not many exact results known for correlation rat
ets, enabling us to quantitatively evaluate the values of
noise parameters corresponding to CRs for concrete mod
or giving sufficient and necessary conditions for their ex
tence@23,24,27,30#. This is caused, first and foremost, by th
fact that even simple model ratchets display a rich variety
behaviors that vary remarkably with the system paramet
It would be quite difficult to capture the full range of thes
possibilities and the transitions between them at chang
parameters by numerical solutions alone.

Unfortunately, the multinoise case is difficult to treat an
lytically. However, the advantage of multinoise models w
©2001 The American Physical Society10-1
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a thermal noise is that the control parameter is temperat
which can easily be varied in experiments as well as po
tial technological applications.

In this paper, we consider one-dimensional overdam
dynamical systems determined by a first-order differen
equation with a periodic piecewise linear potential and w
an additive noise term composed of a trichotomous and s
thermal noise. The trichotomous process is a symme
three-level stationary telegraph process characterized
three parameters: amplitudea0P(0,̀ ), correlation timetc
P(0,̀ ), and flatnesswP(1,̀ ) @23,31,32#. The purpose of
this paper is to provide exact analytical results for the s
tionary currentJ over extended trichotomous noise para
eters and temperature regimes of the system. We show
the direction and value of the current can be controlled
temperature. In the case of a large flatness, we have
ceeded in reaching conditions which bring forth CRs.

The structure of the paper is as follows. Section II p
sents the model and exact differential equation for the
tionary probability density. Section III analyzes the behav
of the current at different limits, such as the zero-tempera
case, slow-noise limit, large-amplitude limit, etc. Section
focuses on the case of a large flatness. The stationary cu
is found and the dependence of CRs on the noise param
and the temperature is investigated. In Sec. V, the physic
important case of a small noise amplitude is analyzed and
interval of temperature that maximizes the current is e
mated. Section VI contains some concluding remarks.

II. MODEL WITH A TRICHOTOMOUS
MARKOVIAN NOISE

Let us consider an overdamped motion of Brownian p
ticles in a one-dimensional spatially periodic potentialṼ( x̃)
5Ṽ( x̃1L) of a period L and a barrier heightṼ05Ṽmax

2Ṽmin . Its dynamics is determined by the stochastic diff
ential equation

k
dX̃

d t̃
5h̃~X̃!1Z̃~ t̃ !1 j̃~ t̃ !, ~1!

whereh̃( x̃)52(d/dx̃)Ṽ( x̃) is the deterministic force.
The thermal fluctuationsj̃( t̃ ) are modeled by a zero

mean Gaussian white noise with the correlation funct

^j̃( t̃ 1),j̃( t̃ 2)&52kkBTd( t̃ 12 t̃ 2), wherek is the friction co-
efficient,kB is the Boltzmann constant, andT is the tempera-
ture of the system. The random forceZ̃( t̃ ) represents non
equilibrium fluctuations assumed to be a zero-me
trichotomous Markovian stochastic process@23,31,32# taking
the valuesz̃5$ã0 ,0,2ã0%,ã0.0. The jumps follow in time
according to a Poisson process, while the values occur
the stationary probabilitiesPs(ã0)5Ps(2ã0)5q, Ps(0)
5(122q). The marginal densityp( z̃, t̃ ) for this process
evolves according to
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]p~ z̃, t̃ !

] t̃
52 ñS p~ z̃, t̃ !2Ps~ z̃!E p~ z̃8, t̃ !dz̃8 D ,

so that the trichotomous process is a particular case of
kangaroo process@24#, with a correlation timet̃c51/ñ and
with the flatness parameterw5^Z̃4( t̃ )&/^Z̃2( t̃ )&251/(2q).
In a stationary state, the fluctuation processZ̃( t̃ ) satisfies

^Z̃( t̃ 1 t̃),Z̃( t̃ )&52qã0
2exp(2ñt̃) and the noise intensity is

s̃254qã0
2/ ñ, i.e., it is a symmetric zero-mean exponentia

correlated noise.
By applying a scaling of the form

X5
X̃

L
, t5

t̃

t0
, Z5

LZ̃

Ṽ0

, V~x!5
Ṽ~ x̃!

Ṽ0

, j5
L j̃

Ṽ0
~2!

we get a dimensionless formulation of the dynamics with
potentialV with the propertyV(x)5V(x21). By the choice
t05kL2/Ṽ0, the dimensionless friction coefficient turns
unity. The rescaled noise is given by

n5
kL2ñ

Ṽ0

, a05
Lã0

Ṽ0

, D5
kBT

Ṽ0

, ~3!

where 2D is the strength of the rescaled zero-mean Gaus
white noisej(t). For brevity’s sake, from now on we sha
call D temperature. The dynamics reads

dX

dt
5h~X!1Z~ t !1j~ t !, h~x![2

dV~x!

dx
. ~4!

The joint probability density for the position variablex(t)
and the fluctuation variablez(t), Pn(x,t), satisfies the
Fokker-Planck master equation

]

]t
Pn~x,t !52

]

]xF S h~x!1zn2D
]

]xD Pn~x,t !G
1(

m
UnmPm~x,t !, ~5!

with Pn(x,t) denoting the probability density for the com
bined process (x,zn ,t); n,m51,2,3; z1[2a0 , z2[0, z3
[a0, and

U5nS q21 q q

122q 22q 122q

q q q21
D . ~6!

The stationary currentJ is then evaluated via the curren
densities
0-2
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j n~x!5S h~x!1zn2D
d

dxD Pn
s~x!,

J5(
n

j n~x!, ~7!

wherePn
s(x) is the stationary probability density for the sta

(x,zn). It follows from Eq.~5! that the currentJ is constant.
For the calculation of the stationary probability density

the x space,P(x)5(nPn
s(x), and the stationary currentJ

5const, the following differential equation can be obtain
from Eq. ~5!:

nc~x!1
d

dx S h~x!c~x!22qa0
2P~x!2D

d

dx
c~x! D

1
d

dx H 1

n1h8~x! S h~x!2D
d

dxD Fnc~x!

1
d

dx S h~x!c~x!22qa0
2P~x!2D

d

dx
c~x! D G J

5~122q!a0
2 d

dx F 1

n1h8~x!

d

dx
c~x!G , ~8!

where

h8~x![
d

dx
h~x!, c~x![2J1h~x!P~x!2D

d

dx
P~x!.

~9!

This is a~nonautonomous linear! fifth-order ordinary differ-
ential equation with, additionally, the probability currentJ to
be determined. Two conditions are imposed on it: periodic
P(x)5P(x11) and normalization ofP(x) over the period
interval L51 of the rescaled ratchet potentialV(x):

E
0

1

P~x!dx51. ~10!

These two conditions are sufficient for a unique solution
Eq. ~8!. The combination of Eqs.~8!–~10! with Eq. ~4! yields
the following relation between the average of the parti
velocity ^dX/dt& and the currentJ:

^dX/dt&5^h~X!&5E
0

1

h~x!P~x!dx5J. ~11!

In the case ofq5 1
2 ~a dichotomous noise!, the last term in

Eq. ~8! vanishes and Eq.~8! is satisfied by every solution o
the equation

nc~x!1
d

dx S h~x!c~x!2a0
2P~x!2D

d

dx
c~x! D50.

The latter corresponds to Eq.~4! in caseZ(t) is a dichoto-
mous noise. This has been investigated by several aut
@15–17,24#.
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Unfortunately, exact solutions of Eq.~8! can be obtained
in only a few cases. Here we consider a piecewise lin
~sawtoothlike! potential, the dimensionless form of whic
reads

V~x!5H 2~x2d!/d, xP~0,d! mod 1,

~x2d!/~12d!, xP~d,1! mod 1,
~12!

wheredP(0,1) determines the asymmetry of the potenti
which is symmetric ifd5 1

2 . We may confine ourselves to th
cased< 1

2 . As our starting equation~8! has been derived a
the assumption thatV(x) is differentiable at every point, we
have to consider the sawtooth potential as a limit case o
smooth potential, so that

h~d1k!5h~k!50,

with k being an integer. The forceh(x) being periodic, the
stationary distributionP(x) as a solution of the problem Eqs
~8!–~10! is also periodic and it suffices to consider the pro
lem in the interval@0,1). The force corresponding to th
potential~12! is

h~x!52
dV~x!

dx
5H bª1/d, xP~0,d!,

2cª21/~12d!, xP~d,1!.
~13!

As the forceh(x) is a piecewise constant in the open inte
vals (0,d)(mod 1) and (d,1)(mod 1) with a discontinuity at
points x15d(mod 1), x251(mod 1), Eq.~8! splits up into
two fifth-order linear differential equations with constant c
efficients for two functionsPi(x) ( i 51,2) defined on the
intervals (0,d) and (d,1), respectively. The solution reads

Pi~x!5
J

hi
1 (

k51

5

Cikel ikx/D, ~14!

whereh1ªb, h2ª2c, Cik are constants of integration, an
$l ik ,k51, . . . ,5% is the set of roots of the algebraic equatio

l i
523hil i

41~3hi
22a0

222nD !l i
31~4Dn1a0

22hi
2!hil i

2

1nD~nD22hi
212qa0

2!l i2D2n2hi50. ~15!

Ten conditions, at the points of discontinuity, follow from
Eqs.~5! and ~8!:

P1~xk!5P2~ x̄k!, c1~xk!5c2~ x̄k!,

T̂1c1~xk!5T̂2c2~ x̄k!,

T̂2
2c2~ x̄k!2T̂1

2c1~xk!5~b1c!Ck ,

d

dx
~ T̂1

22a0
2!c1~xk!5

d

dx
~ T̂2

22a0
2!c2~ x̄k!,

where k51,2, T̂iªhi2D(d/dx), c i(x)ªT̂i Pi(x)2J, x1

5 x̄15d, x250, x̄251, C1ªC21n*0
dc(x)dx, and the con-

stantC2 is defined by
0-3
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C252qa0
22E

0

1

h~x!c~x!dx2nE
0

1

dx8E
0

x8
c~x!dx.

By including the eleventh~normalization! condition, one ob-
tains a complete set of conditions for the ten constants
integration of Eq.~14! and for the probability currentJ. This
procedure leads to an inhomogeneous set of eleven li
algebraic equations. Now,J can be expressed as a quotient
two determinants of the eleventh degree. However, this c
plex formula is not reproduced here and instead the e
results are analyzed for their corresponding differ
asymptotic regimes.

III. ASYMPTOTIC REGIMES

A. The zero-temperature case

The case of zero temperature has been considered in
tail in @23#. Here is a short review of the points needed fu
ther on.

The following characteristic regions can be discerned
the noise amplitudea0.

~i! There is no current, if 0,a0,c, as there is a station
ary stable point for any staten.

~ii ! In the case ofc,a0,b, there exists one stationar
stable point forz(t)52a0, the motion to the left is switched
off, and the current is positive.

~iii ! In the case ofa0.b, the stochastic processZ(t) can,
though it should not, induce a reversal of the current. N
we shall consider this case in some detail.
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In the phase space of the parametersw, a0 one can dis-
tinguish between four domains of qualitatively differe
shapes of the currentJ(n), characterized also by sign reve
sals. Three circumstances should be pointed out:~i! there is a
lower limit for the noise amplitude, namelya05b1c, below
which there is no CR at anytc or w; ~ii ! the correlation time
tc51/n has an upper limit over which there cannot be mo
than one CR;~iii ! the flatness parameterw has a critical
value w52. If w,2, then, as the correlation time grow
from 0 to`, there can be either two reversals or none, an
w.2, one reversal can but need not occur. It is remarka
that at sufficiently large noise amplitudes,a0

2@max$b2/q2(1
22q), n/2q(122q)%, the behavior of the current is com
pletely due to the effect of the flashing barrier for all valu
of the correlation time and the flatness parameter. In the c
of fixed values ofw andtc , the current saturates to a finit
negative value at great noise amplitudes:

J52
122q

2qn
@b2~12e22nq/b2

!2c2~12e22nq/c2
!#.

~16!

In the fast-noise limit (n→`, all other parameters fixed!, the
current is transcendentally small. In this case, the curren
positive if w,2 and negative ifw.2.

B. The large-amplitude limit

For a0→` and for fixedn, q, andD, i.e., for the case of
a very large noise intensitys254qa0

2/n@1, the current
saturates at the value
J52
~122q!b2c2$h~12a2!~«2b!~12«b!2g@~12b2!~«2a!~12«a!1h~12«2!~12ab!~a2b!#%

2«nq$gh@~12ab!21~a2b!2#1~8qnD/bc21!@~12ab!22~a2b!2#%
, ~17!
:
-
he
where gªA118nqD/b2, hªA118nqD/c2,
«ªexp(21/2D), aªexp(2g/2D), bªexp(2h/2D).

It should be noted that in this case the current is nega
~or zero! for all finite values ofn,D,d, andq. Obviously, if
q5 1

2 , i.e., for dichotomous noises, or if the potential is sy
metric (b5c), there is no current in the stationary sta
Equation~17! reveals a new quantitative aspect of the int
action of the noises: they combine to produce a new len
scaleAD/n ~see also@15#!. This length scale is a typica
distance the particle can diffuse between switches of the
chotomous force. There is no such length scale in the
sence of one of the fluctuation sources. At limit of zero te
perature, we find that the current is given by Eq.~16!. If
D→`, we have

J'2~122q!
nq~b2c!

180bcD3 , ~18!

thus the current decays algebraically to zero inD23 at a rate
proportional totc

21 .
e

-
.
-
th

i-
b-
-

In the case ofa0
2@qnD→`, while D is finite, we obtain

J'2~122q!
2~b2c!b2c2D

~8qnD !3/2
~19!

and the current vanishes algebraically in (qnD)23/2 at a rate
proportional toD.

The conditionqnD@1 takes a distinct physical meaning
the length scaleAD/n is much larger than the typical dis
tance the particle is driven by the deterministic force in t
statez50 of the trichotomous noise.

In the asymptotic limit ofqn→0, i.e., if the trichotomous
noise changes slowly,J is given by

J'2
~122q!nq~b2c!

bc
f ~D !, ~20!

where
0-4
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f ~D !ª124D1
2

D~e1/D21!
S D1

e1/D

e1/D21D . ~21!

As D increases, the functionf (D) monotonically decrease
from 1 to 0.

We can see that the currentJ tends to zero asnq→` or as
nq→0. Consequently,J reaches a minimum as a function
n. The value of the correlation time that minimizes the c
rent (tcm51/nm), being a solution of a transcendental equ
tion, can in a general case be found by numerical calculat
Some of its properties can be analyzed analytically, thou
As the temperature grows from zero to infinity, the para
eter nm starts from a finite valuenm(0), decreasing to a
minimum, and then grows monotonically~see Fig. 1!.

For D.1, the following approximate equation seems a
ceptable:

nm'
3bc

2q
DS 11

11A3

10
Ac

bD , ~22!

so that the parameternm is proportional to the temperatur
and to the flatness parameter.

According to numerical calculations by various values
the system parameters, the application of Eq.~22! does not
cause an error exceeding a few percent.

At large values of the potential asymmetry,b@c, and if
the conditionD!1 is also fulfilled,nm can be given as

nm'nm~0!S 12
2~b2c!D

c D . ~23!

Hence,nm decreases if the temperature increases. The co
lation timetc051/nm(0), which minimizes the current in the
case of zero temperature, can be found by the following tr
scendental equation@wherex52qnm(0)#:

~x1b2!e2x/b2
5~b22c2!1~x1c2!e2x/c2

. ~24!

If b@c, we have

FIG. 1. The switching ratenm that minimizes the current@see
Eq. ~17!# vs the dimensionless temperatureD. The curves~1!–~3!
correspond to the following parameters:~1! q50.25, d50.05; ~2!
q50.25, d50.25; ~3! q5

1
3 , d50.45. If D.1, thennm is nearly

proportional to the temperature.
04111
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nm~0!'
bc

A2q
S 11

A2c

3b
1

11c2

36b2D .

The dependence of the current on the temperature and
switching raten is illustrated in Fig. 2. As the temperatur
grows, the current decreases monotonically to zero at
values of the parametersq,n, andd.

It is remarkable that in the case of fixed values ofw,tc ,
and D, the current saturates to a finite value at large no
amplitudes (a0→`). This somewhat surprising result is du
to both an effective inhomogeneous diffusion, which b
comes more homogeneous at an increasinga0, and the so-
called flashing barrier effect as stated in Refs.@20,23#.

C. The white-noise limit

In the trichotomousd-correlated limit,n→`,a0→`, so
that s254qa0

2/n is finite, the solution of problem~8! re-
duces to

FIG. 2. The currentJ vs the switching raten at different tem-
peraturesD in the case of the large-amplitude limit@Eq. ~17!#. The
flatness parameter equalsw51/2q52 and the potential asymmetr
parameter isd50.25. The current is negative and its absolute va
decreases monotonically asD increases.

FIG. 3. The currentJ vs the temperatureD at various noise
amplitudesa0 in the case of an adiabatic limit@Eq. ~26!#. The
flatness parameter equalsw51.5 and the potential asymmetry pa
rameter isd50.25. Note that fora0,b51/d, the current exhibits a
bell-shaped extremum; ifa0.b, then J decreases monotonically
The temperature that maximizes the current decreases mono
cally asa0 increases.
0-5
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J'
s4~b22c2!e1/D*

4nD* 5~e1/D* 21!2
~22w!, ~25!

where

D*ª
s2

2
1D, wª

1

2q
.

The current in this limit is proportional to the noise corre
tion time that in this case is a measure of the distance f
equilibrium. The current in Eq.~25! has a factor dependen
on noise statistics via the flatness parameterw.

As the flatness parameter grows, a current reversal
pears atw52 in complete accordance with the results
@24#, where the general kangaroo process is considered.
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current J takes an extremum at the effective temperat
D* '0.203. Hence, if the intensity of the trichotomous noi
s2 is less than 0.406, there is a characteristic temperatureDm
that maximizes ~for w.2 minimizes! the current: Dm
50.2032s2/2. If the intensitys2 exceeds the critical value
0.406,J decreases monotonically to zero as the tempera
increases.

D. The adiabatic limit

At the long-correlation-time limitn→0, the current satu-
rates at the value

J5J0~b,c!2J0~c,b!, ~26!

where
J0~b,c!5
q~a01b!2~a02c!2

~a01b!~a02c!~b2c1a0!2D~b1c!2~e(a01b)/bD21!~e(a02c)/cD21!/~ea0 /D21!
. ~27!
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The form of the currentJ essentially coincides with that in
@4# in the case of a dichotomous noise. For the adiabatic li
the current is positive and changes with temperature as
lows: in case the trichotomous fluctuations induce transiti
back and forth over the potential barrier, i.e., ifa0.b, J
decreases monotonically as the temperature increases. O
other hand, if the trichotomous transitions do not indu
transitions in both directions over the barrier, i.e., ifa0,b,
the net current exhibits a bell-shaped extremum~see Fig. 3!.
Hence, ifa0,b, there is an optimal temperatureDm maxi-
mizing the current. As the noise amplitudea0 increases, the
temperatureDm decreases monotonically to zero ata05b.

For small noise amplitudes,a0!min$c,D%, one finds from
Eqs.~26! and ~27! that

J'
qa0

2~b2c!e1/D

D3bc~e1/D21!2
f ~D !, ~28!

wheref (D) has been defined in Eq.~21!. It is easy to ascer-
tain that the optimal temperatureDm'0.216. It is remark-
able that in this case the characteristic temperatureDm de-
pends neither on the shape of the ratchet potential nor on
parameters of the trichotomous noise. It seems reasonab
assume that for overdamped ratchet models with an add
thermal noise and with an additive low-amplitude noneq
librium noise, the same value of the optimal temperature
the adiabatic limit occurs.

E. The fast-noise limit

In the fast-noise limit, we allown to become large, hold
ing all other parameters fixed, and usen21/2 as a smallness
parameter. Thus, ifDÞ0, in the largen limit the current can
be given as
it
l-
s

the
e

he
to

ve
-
n

J'
qa0

2bc~b22c2!e1/D

2n5/2D7/2~e1/D21!2
, ~29!

so that the current is positive and decays algebraically to z
in n25/2. In the case of a dichotomous noise (q5 1

2 ), such a
formula for J has been found in@15#. The thermal noise has
a strong effect on the current in the smalltc limit: in the
presence of thermal noise fluctuations, the current takes
ponential growth fromJ;6exp(2C/tc) with a positive con-
stantC that depends ona0 ,q, andd, to J;tc

5/2. It looks like
in this model the two noises acting together are able to g
erate a considerably more organized motion than either
of them alone, even though they are generated by statistic
independent sources. The authors of Ref.@15# have reached
an analogous conclusion for the case of a dichotomous no
Extreme sensitivity to thermal noise can be seen from
factor e1/D/(e1/D21)2 in Eq. ~29! that decays exponentially
at a smallD and the current drops likeO(e21/D) asD→0.
Notably, the limitsD→0 andn→` do not commute in the
formulas for the currentJ ~see also@16#!. It should also be
noted that though in the case ofw.2 andD50 there can
also occur one CR caused by variation ofn, in the case of
w.2 andDÞ0 there can occur either two reversals or non

It can be seen easily that the functional dependence of
current on the temperatureD is of a bell-shaped form. The
optimal temperatureDm that maximizes the current equa
0.309.

IV. TRANSPORT IN THE CASE OF LARGE FLATNESS

A. The large-flatness limit

At a large-flatness parameter, i.e.,w@1, a natural way to
investigate the behavior ofJ is to apply small-q perturbation
expansions. The stationary solution of Eq.~8! with DÞ0 is
0-6
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constructed in terms of integer powers ofq. The current can
be expressed asJ5qJ(1)1q2J(2)1•••. We shall calculate
the leading term of the currentqJ(1). Notably, the analysis o
this section is valid for the values of parameters satisfy
the conditions

uDr iku[ur ik2r ik
0 u!min$uhi u,ur ik

0 u%, i 51,2, ~30!

where$r ik ,k51, . . . ,5% is the set of roots of the algebra
equation~15! and$r ik

0 ,k51, . . . ,5% is the set of roots of Eq
~15! for q50. These conditions result from the assumpti
that the higher-order terms in the expansion of the roots
Eq. ~15! are asymptotically smaller than the lower-ord
s
re

he
e

h
i

m

04111
g

f

terms held in the calculation, and that the exponential te
exp(Drik /hi) of the current J can be linearized, i.e.
exp(Drik /hi)'11Drik /hi .

The exact formula for the leading-order termqJ(1) of the
current is

qJ(1)5
qna0

2b2c2e1/D

~e1/D21!2 F J̃~b,c!2 J̃~c,b!

2
2a0

2~b2c!

Dbc~n2D22c2a0
2!~n2D22b2a0

2!G , ~31!

where
J̃~b,c!5
~nD1a0

2!$g1g2@a1b1~a21b2!2b2a2~a11b1!#1d~a01b!1 d̃~a02c!%12nD@d~a02b!1 d̃~a01c!#

~nD2ca0!2~nD1ba0!2$g1g2@«1«212~a12a2!~b22b1!#1«1«2@4nD1~a01b!~a02c!#%
~32!
i-
mal

o

l
pli-

in

a-
and

g iªA4nD1~a01hi !
2, h1ªb, h2ª2c,

« iª12expS 2
g i

Duhi u
D ,

a iª12expF2
1

2D S a02hi

hi
1

g i

uhi u
D G ,

b iªexpF 1

2DS a02hi

hi
2

g i

uhi u
D G21, ~33!

dª«1b2a2g2 , d̃ª«2b1a1g1 .

The result ~31!–~33! is not confined to the large-flatnes
model. Instead, it applies to a large class of asymptotic
gimes. It is also valid for all asymptotic regimes in which t
leading term is proportional toq. These are, for example, th
adiabatic limit (n→0), the fast-noise limit (n→`), and the
case of a small noise amplitude (a0!c). It is not difficult to
see that at the limitsn→0 andn→`, Eqs.~31!–~33! reduce
to Eqs.~26! and ~29!, respectively.

The exact formula~31! for qJ(1) is complex and as suc
not lucid enough. To get more information, we shall study
in the asymptotic limits. To visualize the exact results, co
puter graphics will be applied.

B. Asymptotics

~i! In the trichotomousd-correlated limit, we have

J'qJ(1)'
2a0

2s2~b22c2!e1/D

2n2D5~e1/D21!2
. ~34!
-

t
-

This result coincides with Eq.~25! if s2/2!min$D,D2% and
w@1. The first condition, in which the intensity of the tr
chotomous noise is much smaller than that of the ther
noise, is in complete accordance with the conditions~30!.

~ii ! In the case of low temperature,D→0, the conditions
~30! reduce toq!min$c/a0,c2/2n%. For a0.b, the current
behaves asymptotically as

J'nq$@en/c(a02c)2e2n/b(a01b)#21

2@en/b(a02b)2e2n/c(a01c)#21%. ~35!

Notably, J is positive in the case ofa0<bc at anyn. If the
noise amplitude exceedsbc, then the current reverses t
negative atn5n0. The point of reversaln0, being a solution
of the transcendental equationJ(n0)50, can in a genera
case be found by numerical calculation. As the noise am
tude grows, the parametern0 decreases in the regiona0
.bc monotonically from infinity to zero. Ifa0@bc, the
asymptotic formulan0'2b2c2/a0

2 can be of use.
For c,a0,b, Eq. ~31! takes the form

J'nq@en/c(a02c)2e2n/b(a01b)#21,

so that the current is positive for all values ofn and d. If
a0,c, then J vanishes likeO(e2C/D) with a positive con-
stantC asD→0.

~iii ! In the asymptotic limit of high temperature,D→`,
we find thatJ is positive and decays algebraically to zero
D24 at a rate proportional toa0

2,

J'
q~b2c!a0

2

180bcD4 . ~36!

We note that this formula is valid for all values of the p
rameterq. To leading order of largeD, this coincides with a
result of @16# for the dichotomous case,q5 1

2 .
0-7
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~iv! For the large-amplitude limit,a0→`, the current
saturates at the negative value

J52
nq~b2c!

bc
f ~D !, ~37!

where the functionf (D) is defined by Eq.~21!. This is valid
for 2q!1 andqn!min$c2,c2/D% @see also Eq.~20!#.

~v! For small amplitudes,a0!c, the leading term of the
current is positive and exhibits a bell-shaped form asD is
varied. The behavior ofJ in this case will be considered i
Sec. V.

Drawing on the asymptotic expressions ofJ(1), we can
reach the following results.~i! For the variations of the am
plitude a0, an odd number of CRs occurs.~ii ! At the varia-
tions of the correlation timetc , the number of CRs is eve
or zero.~iii ! As for changes of the temperatureD, we have to
differentiate between two cases. First, ifa0,bc, or if a0
.bc and tc.1/n0, there can occur either zero or an ev
number of CRs. Second, in the case ofa0.bc and tc
,1/n0, there is always an odd number of CRs. Moreover
numerical calculations, varying the parameterD, we have
not observed more than two subsequent CRs. Thus, for~iii !
the possible number of CRs is zero, one, or two.

C. Current versus noise amplitude

We may look at the solution~31! as a function ofa0. At
numerical analyses of the functionJ(1)(a0) we have ob-
served up to three CRs. For example, at the parameter va
d50.005,D50.02, andn51000, the current takes three z
ros: a01'15.79,a02'18.25, anda03'162.31.

Still, in most cases there is only one CR. The typical fo
of the graph ofJ(a0) is represented in Fig. 4. The curre
has a positive maximum at a certain finite valueam of a0,
and exhibits a reversal of the direction ata05a* .am . For a
largea0, the current saturates at a finite negative valueJ(`)
@see also Eq.~37!#. At increasing temperature, the curre
J(`) approaches zero monotonically. Following fro

FIG. 4. The currentJ5qJ(1) vs the trichotomous noise ampl
tudea0 at the potential asymmetry parameterd50.25 in the case of
large flatness@Eq. ~31!#. Curves~1!–~3! correspond to the following
parameters:~1! n51, D50.4; ~2! n530, D51; ~3! n510, D
50.5. For largea0, the current saturates at a finite negative va
determined by Eq.~37!.
04111
n

es

Eq. ~37!, one might be tempted to postulate that for decre
ing values of the correlation timetc , the absolute value o
J(`) increases monotonically. However, this occurs only
the values ofn!min$c2/q,c2/Dq% where Eq.~37! is valid.

Though, in general, the parametersam anda* cannot be
expressed by elementary functions, at certain constra
rather simple approximate solutions can be found for the
For example, ifd.0.01,D.1/r, and n,15rD, then the
value of the noise amplitudeam that maximizes the current i
proportional to the temperature:

am'rbcD, ~38!

wherer is the solution of the transcendental equation

2~b2c!5r3
d

dr H 1

r3~erbc21!
@rbc~erb2erc!

22~b2c!~erb21!~erc21!#J .

The relative error at the application of Eq.~38! does not
exceed 10%.

D. Current versus switching rate

We may also look at the solution~31! as a function of the
switching raten. The typical forms of the graph ofJ(n) are
represented in Fig. 5. There is a lower limit for the noi
amplitudea1(D), which depends on the temperature belo
which there is no CR at anyn. Direct numerical calculations
with various values of the system parameters indicate tha
a moderate asymmetry of the potential,d.0.01, the behav-
ior of J(n) is as follows. Ifa0.a1(D), then two CRs occur
as the correlation time grows from 0 tò. For increasing
values ofn, the current starts from a positive value dete
mined by Eq.~26!, decreasing to a negative local minimum
next it grows, attaining a positive~very small in most cases!
local maximum, and thenJ approaches zero asn→`. The

FIG. 5. The currentJ5qJ(1) vs the switching raten in the case
of large flatness@Eq. ~31!#. The curves have been computed for t
noise amplitudea050.94, the potential asymmetry parameterd
50.25, and temperatures: (1)D50.1, (2)D50.098, (3)D50.097,
(4)D50.096. IfD,Dc(a0)'0.0976@curves~3! and~4!#, two cur-
rent reversals occur. The currentJ grows monotonically to a finite
positive value asn drops from 100 to zero.
0-8
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CONSTRUCTIVE ROLE OF TEMPERATURE IN . . . PHYSICAL REVIEW E63 041110
local maximum of the currentJ increases and the corre
sponding switching ratenm @Jmax5J(nm)# decreases mono
tonically as the temperature increases. The current cha
its sign at the two noise correlation time valuest151/n1 and
t251/n2. A growth of the temperature causes the bigger
the two solutions ofJ(n)50, n2, to drop monotonically
from infinity to a certain finite value, while the other solutio
n1 is nonmonotonic and has a minimum at a finite value
D5D1. It should be noted that the temperatureDm at which
the absolute value of the local minimum of the current
maximal does not differ much from the temperatureD1, ex-
ceeding it only slightly.

At low temperatures,D,D1, one has to discern two
cases. First, ifa0,bc, thenn1 tends to infinity ifD tends to
zero. Second, ifa0.bc, then at decreasingD the parameter
n1 approaches a finite valuen1(0) that can be found from
the transcendental equation@n05n1(0)#

en0 /c(a02c)1e2n0 /c(a01c)5en0 /b(a02b)1e2n0 /b(a01b).
~39!

Notably, at large values of the amplitude,a0@bc, the mini-
mum n1(D1) of n1 is practically equal to the parametern0,
i.e., n1(D1)'n1(0).

If D.D1, thenn1 increases asD grows: there is anothe
characteristic temperatureDc.D1 at which the phenomeno
of CR disappears. ForD5Dc , the parametersn1 and n2
coincide (n15n2) anda1(Dc)5a0. If D.Dc , then the cur-
rent is positive. The corresponding typical graphs ofJ(n) are
given in Fig. 5 as the curves~1! and ~2!. For high tempera-
tures, whereD@Dc , the curveJ(n) is always monotonic.

According to numerical calculations ford.0.001 we can
notice that at sufficiently large values of the noise amplitu
the critical temperatureDc is proportional to the amplitude
At moderate asymmetries of the potentialV (d.0.2), the
factor of proportionality takes a remarkably simple form:

Dc'
a0

A3bc
, a0.1. ~40!

The tendency that is apparent at Eq.~40!, namely a decreas
of the critical temperature as the asymmetry of the poten
grows, is also valid for large asymmetries (d,0.2).

At some cases, one can find rather simple expression
the approximation of the parametern1. For example, in the
case of a large noise amplitudea0@max$bc,A3bcD%,d
.0.2, the value of the first reversal pointn1 can be estimated
by the following equation:

n1'
n1~0!

f ~D !
, ~41!

where f (D) is given by Eq.~21!. Specifically, forD!1 we
have n1'n1(0)(114D), and if D@1, then n1
'180n1(0)D3.

Notably, at large potential asymmetries,d,0.01, we have
noticed remarkable exceptions from the described beha
of J(n). For instance, ifd50.005 anda0523, there can be
four CRs with five critical temperatures:Dc1'0.334, Dc2
04111
es

f

f

,

al

for

or

'0.280, Dc3'0.062, Dc4'0.058, Dc5'0.050. Within the
values ofD.Dc1 andDc3,D,Dc2, there is no CR; within
Dc2,D,Dc1 , Dc4,D,Dc3, and D,Dc5, there are two
CRs; withinDc5,D,Dc4, there are just four CRs.

E. Current versus temperature

In Fig. 6, we have plotted the currentJ(D) as a function
of the temperatureD. It can be seen that the effect of CR ca
be attained also by changing the temperatureD. In a general
case, the dependence ofJ(D) is nonmonotonic and there ar
one to three characteristic~optimal! temperatures at which
the left and right currents are maximized. It is remarka
that there exist both the critical valueac5bc of the ampli-
tudea0 and the critical valuet1(a0)51/n1(D1) of the cor-
relation timetc .

~i! If tc.t1(a0), then there is no CR. The current
positive at all temperatures. The concrete value oft1(a0) for

FIG. 6. The currentJ5qJ(1) vs the temperatureD in the case of
large flatness@Eq. ~31!# at d50.25. In the limit of high temperature
J is positive and decays to zero inD24. ~a! The case ofa0,bc.
Curves ~1!–~4! correspond to the following parameters:~1! a0

51.5, n51; ~2!a053.5, n516; ~3! a053.5, n521; ~4! a054.5,
n521. If n.n1(D1), then two current reversals occur@curves~3!
and~4!#. The parametern1(D1) can be found by using Eq.~31!. ~b!
The case ofa0.bc. Herea056 and the curves correspond to~1!
n53, ~2! n510, and~3! n550. If n.n0'3.751, one current re-
versal appears@curves~2! and~3!#. The critical switching raten0 is
the solution of Eq.~39!. No current reversals occur whenn
,n1(D1)'3.735@curve ~1!#.
0-9
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a givena0 and asymmetry of the potential can be found
numerical methods from Eq.~31!.

~ii ! In the cases of large amplitudesa0.bc, another criti-
cal value of the correlation timet2(a0)51/n0,t1(a0) ap-
pears, wheren0 is the solution of Eq.~39!. If a0.bc and
t2,tc,t1, there are two CRs. But ifa0.bc and tc,t2,
there is only one CR. Notably, ata0.bc the phenomenon o
two CRs would be hardly noticeable, fort2 andt1 can differ
materially from each other only ifa0'bc. For example, if
d50.25 (ac516/3), then it follows that~a! if a055.4, then
D1'0.08, t1'0.167,t2'0.093; and~b! if a056, thenD1
'0.016,t1'0.268,t2'0.267. A further growth of the am
plitude would cause a quick drop of the difference oft1 and
t2.

~iii ! In the case ofa0,bc and tc,t1(a0), there occur
either two CRs or none. For moderate asymmetries of
potential,d.0.01, we have always seen two CRs. At lar
asymmetries,d,0.01, CRs can be absent in the regionc
!a0!b and there can be several critical correlation tim
for example, there are three in the case ofd50.005 anda0
523, namely t1'6.0031023, t2'4.5731023, and t3
'1.3431023. In the regions oftc.t1 , t3,tc,t2, there is
no CR, and int2,tc,t1 , tc,t3, there are two CRs.

The characteristic temperaturesD* at which the current is
zero are sensitive to variation of the model parametersa0 , d,
and n. Note that in Eq.~3! the friction coefficient of the
particle has been absorbed into the time scale. Thus, in
original ~unscaled! setup, particles with different friction co
efficients are controlled by different effectiven ’s and can
move in either direction in the same ratchet potential and
same fluctuating environment, which has interesting biolo
cal and technological implications~see@1–3,6,7,9#!.

V. THE CASE OF A SMALL NOISE AMPLITUDE

Here we consider the case ofa0!min$c,D%. We can start
with the ansatz

P~x!5
e2V(x)/De1/D

D~e1/D21!
1a0

2P̃~x!

in Eq. ~8!. Collecting the terms of the ordera0
2, we get an

inhomogeneous second-order equation forP̃(x). In the case
of a sawtoothlike potential~12!, this equation is immediately
solvable. As the corresponding expression for the curren
rather cumbersome, we would rather not present it h
However, the currentJ can be given the form

J5a0
2 lim

a0
2→0

qJ(1)

a0
2

, ~42!

whereqJ(1) is determined by Eqs.~31!–~33!. It should be
noted that Eq.~42! is valid for all values of the flatnes
parameterw51/2q>1.

The net current is positive and exhibits a bell-shaped
tremum ~see Fig. 7!. As the correlation time increases,J
decreases monotonically from
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J5
qa0

2~b2c!e1/D

D3bc~e1/D21!2
f ~D !

to zero@see also Eq.~28!#. A direct numerical calculation of
the optimal temperatureDm , at which the current is maxi-
mized, indicates thatDm is a slowly varying function of the
correlation timetc and of the asymmetry of the potentiald
~see Fig. 8!. For all values of the parametersd and tc , the
optimal temperatureDm is in the interval~0.21,0.32!. As the
correlation time decreases, the optimal temperature incre
from Dm'0.216 to a local maximum~that is small and
hardly discernible! and then decreases to 0.309. This is
remarkable result, for it indicates that there is some robu
ness in the system: it can be assumed that the inte
~0.21,0.32! of the temperature is optimal for a large class
overdamped ratchet models with an additive thermal no
and with an additive low-amplitude nonequilibrium noise.

VI. CONCLUDING REMARKS

Above, we have presented some analytical and exac
sults for the dynamics of an overdamped Brownian parti
in a sawtooth ratchet potential subjected to both therm
noise and zero-mean exponentially correlated three-le
fluctuations~trichotomous noise!. A major virtue of the mod-
els with trichotomous noise is that they constitute anot
case admitting an exact analytical solution for the station
current for any value of the correlation timetc51/n, the
noise amplitudea0, and the flatness parameterw.

For both slow and fast fluctuating forces, we have p
sented approximations that agree with the results of R
@4,15,16,24#. In the case of large noise amplitudes (a0→`)
with the other parameters fixed, the current saturates
finite negative value@Eq. ~17!#. This result is due to the
so-called flashing barrier effect as stated in Refs.@20,23#. It
is remarkable that in the cases of the adiabatic limit, fa
noise limit, small-amplitude limit, and high-temperatu
limit, the current takes the same qualitative form as in
corresponding cases with a dichotomous noise. The pres
of flatnessw.1 modifies the prefactor in a simple way: th

FIG. 7. The currentJ5qJ(1) vs the temperatureD for a varying
switching raten in the case of a small noise amplitudea050.01 and
d50.25 @Eq. ~42!#. The current is positive and exhibits a bel
shaped form for all values of the flatness parameterw.
0-10
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FIG. 8. The temperatureDm that maximizes
the current in the case of small-noise amplitu
vs lnn for some values of the potential asymmet
parameterd. The optimal temperatureDm does
not depend on the flatness parameter and lies
the interval~0.21,0.32! at all values ofd, andn.
We can see that at small values ofd, an addi-
tional maximum and minimum ofDm appear.
s
te

ud
l

th
n

ve
b

od
am
ow
tio
de
ly

th
by
is
pa
t

rie
e
re

d

era-

R.
e

y
e
he
c-

ll-

ters
l
at

er-
an

to

ian
current is proportional to 1/w. This indicates that in the case
mentioned above, the flashing barrier effect can be neglec

The thermal noise had a profound effect on the magnit
of the current in the smalltc limit. By an absence of therma
noise, the flatness parameterw has a critical valuew52 for
the greater values of which at sufficiently large values of
amplitudea0, the currentJ(tc) versus correlation time ca
be characterized by one sign reversal ofJ ~CR!; in the small
tc limit, the current is transcendentally small and negati
In the presence of additional thermal noise, there can
either an even number of CRs or none; in the smalltc limit,
J is positive and decays algebraically intc

5/2. Notably, in the
case of a symmetric dichotomous noise (w51), there is no
CR and the current is positive at all temperatures.

An interesting circumstance concerning the ratchet m
els with a trichotomous noise is that for some system par
eters there occur more than two CRs. As far as we kn
more than two CRs have never been seen for correla
ratchets so far. At the same time, in the case of inertial
terministic rocking ratchets, the current can exhibit infinite
many reversals@33,34#.

Our major result is that in sawtooth ratchet structures,
direction of the transport of Brownian particles driven
trichotomous fluctuations can be controlled by thermal no
~see Fig. 6!. The necessary condition is that the flatness
rameter exceeds 1. The advantage of this model is that
control parameter is temperature, which can easily be va
in experiments~see also@17#!. The discovery of temperatur
regions in which particles of different friction coefficients a
transported in opposite directions could be implemented
an effective method of particle separation as suggeste
x
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@8,17,21,22,35#. For large flatnesses (w@1), we have elabo-
rated on the conditions for the noise parameters and temp
ture leading to a sign reversal ofJ. If the control parameter is
temperature, then there is an upper limitt1(a0) for the cor-
relation timetc , at greater values of which there is no C
For a0.bc, another critical value of the correlation tim
t2(a0),t1(a0) occurs. In the caset2,tc,t1 there are two
CRs, but attc,t2 there is only one CR.

For a0,bc andtc,t1(a0), two or no CRs appear. The
can be absent only at the values of the noise amplitudc
!a0!b, which is possible only at large asymmetries of t
potentiald,0.01. Then the current exhibits disjunct chara
teristic ‘‘windows’’ of the correlation time where the
temperature-controlled CRs take place.

In the case of a small noise amplitude,a0

!min$c,kBT/Ṽ0%, whereṼ0 is a barrier height of the periodic
potentialṼ(x), the current is positive, and it exhibits a be
shaped extremum~see Fig. 7!. The temperatureTm at which
J is maximized weakly depends on the other parame
(w, d, and tc) and always lies in the interva
(0.21Ṽ0 /kB ,0.32Ṽ0 /kB). It seems reasonable to assume th
this temperature interval is optimal for a large class of ov
damped ratchet models with additive thermal noise and
additive low-amplitude nonequilibrium noise. It remains
be seen whether such a tolerance ofTm can play a role in the
problems of natural sciences.
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